Fuel Efficiency In Chopper Engines

  • Wiyogo Wiyogo Universitas Palangka Raya
  • Yesninopy University of Palangka Raya
  • Maria Ulfah University of Palangka Raya
  • Desvarado Sinamulang University of Palangka Raya
  • Trio Al Khafi University of Palangka Raya
Keywords: Choppers Machine, Fuel Consumption, Efficiency

Abstract

Increasing fuel consumption efficiency is a challenge in the development of choppers machine. Multiple testing procedures must be performed in order to improve. aims to evaluate the performance of automobiles running on fuel that meets RON 90 and 92 requirements. The test is performed three times with a consistent angle of cut of 10 degrees at an engine speed of 2,700 rpm.The duration of the combustion engine's operation has an impact on fuel usage. The average consumption difference between the 1800 and 1200 second tests utilizing the cutting load at RON 90 is up to 2% better. With the same amount of time as the prior test, the RON 92 testing showed a 0.5% improvement in fuel efficiency. Speed increases result in more thorough combustion, thus reduces fuel usage. High chopping speeds can be used by users to improve fuel economy.

Downloads

Download data is not yet available.

References

Alemneh, T., & Getabalew, M. (2019). Beef Cattle Production Systems , Challenges and Opportunities in Ethiopia. Juniper Online Journal of Public Health, 5(1), 2019. https://doi.org/10.19080/JOJPH.2019.05.555651

Badan Pusat Statistik Kalimantan Tengah. (2022). Jumlah Penduduk (Jiwa), 2015-2021. https://kalteng.bps.go.id/indicator/12/390/1/jumlah-penduduk.html. https://kalteng.bps.go.id/indicator/12/390/1/jumlah-penduduk.html

Badan Pusat Statistik Provinsi Kalimantan Tengah. (2022). Sapi Potong 2016-2018. https://kalteng.bps.go.id/indicator/24/647/1/sapi-potong.html.

Cao, Y., & Li, D. (2013). Impact of increased demand for animal protein products in Asian countries: Implications on global food security. Animal Frontiers, 3(3), 48–55. https://doi.org/10.2527/af.2013-0024

Davis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125–132. https://doi.org/10.1016/j.gloenvcha.2016.05.004

Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., & Courbois, C. (2001). Livestock to 2020: The Next Food Revolution. Outlook on Agriculture, 30(1), 27–29. https://doi.org/10.5367/000000001101293427

Gezahagn, K., Getnet, A. and, & Feyisa, F. (2017). Review on Major Feed Resources in Ethiopia: Conditions, Challenges and Opportunities Farming System Dynamism in Ethiopia View project African Chicken Genetic Gains View project. Academic Research Journal of Agricultural Science and Research, 5(3), 176–185. https://doi.org/10.14662/ARJASR2017.013

Han, W. Q., & Yao, C. De. (2015). Research on high cetane and high octane number fuels and the mechanism for their common oxidation and auto-ignition. Fuel, 150(February), 29–40. https://doi.org/10.1016/j.fuel.2015.01.090

Kamaruddin, M. R., Hassan, N., Sulaiman, S., & Faiz, M. A. (2020). Analysis of the Exhaust Emission from Vehicle Fueled with Variance Research Octane Number Fuel. 2(1), 1–9.

Karl J Wild, Veit Walther, J. K. S. (2009). Optimizing Fuel Consumption and Knife Wear in a SelfPropelled Forage Chopper by Improving the Grinding Strategy. American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting 2009,. https://doi.org/doi:10.13031/2013.27295

Leavy, P. (2017). Research Design (1 ed.). The Guilford Press A Division of Guilford Publications, Inc. 370 Seventh Avenue, Suite 1200, New York, NY 10001. www.guilford.com

Muhammad, K., Walusimbi, K. H., Jimmy, K., & Swidiq, M. (2018). Design and performance evaluation of a NARO forage chopper prototype for smallholder dairying systems. Design and performance, 5(11), 547–551.

Nakata, K., Uchida, D., Ota, A., Utsumi, S., & Kawatake, K. (2007). The impact of RON on SI engine thermal efficiency. SAE Technical Papers, 456–462. https://doi.org/10.4271/2007-01-2007

Nikolaou, N., Papadopoulos, C. E., Gaglias, I. A., & Pitarakis, K. G. (2004). A new non-linear calculation method of isomerisation gasoline research octane number based on gas chromatographic data. Fuel, 83(4–5), 517–523. https://doi.org/10.1016/j.fuel.2003.09.011

Vu, V. D., Ngo, Q. H., Nguyen, T. T., Nguyen, H. C., Nguyen, Q. T., & Nguyen, V. Du. (2020). Multi-objective optimisation of cutting force and cutting power in chopping agricultural residues. Biosystems Engineering, 191, 107–115. https://doi.org/10.1016/j.biosystemseng.2020.01.007

Wild, K. J., Walther, V., & Schueller, J. K. (2009). Optimizing fuel consumption and knife wear in a self-propelled forage chopper by improving the grinding strategy. American Society of Agricultural and Biological Engineers Annual International Meeting 2009, ASABE 2009, 9(09), 5899–5916. https://doi.org/10.13031/2013.27295

Yonas, M. (2021). Design, fabrication and performance evaluation of animal feed chopping machine. African Journal of Agricultural Research, 17(8), 1155–1160. https://doi.org/10.5897/ajar2021.15626

Published
2023-07-31
How to Cite
[1]
Wiyogo, W., Yesninopy, Ulfah, M., Sinamulang, D. and Khafi, T.A. 2023. Fuel Efficiency In Chopper Engines. Jurnal Ilmiah Kanderang Tingang. 14, 2 (Jul. 2023), 366-375. DOI:https://doi.org/10.37304/jikt.v14i2.196.