Analisis Kualitatif Kesalahan Konseptual Senyawa Ionik dan Senyawa Kovalen dalam Argumentasi Mahasiswa pada Laporan Praktikum Kimia Dasar
Abstrak
Pemahaman konsep senyawa ionik dan kovalen merupakan pondasi penting dalam pembelajaran kimia dasar karena keduanya mendasari struktur, sifat senyawa, dan aplikasinya dalam kehidupan sehari-hari. Kesalahan konsep yang terjadi pada topik ikatan ionic dan kovalen sering terjadi dan berdampak negatif pada kemampuan mahasiswa dalam analisis sifat senyawa, keterampilan berpikir kritis, dan argumentasi ilmiah. Di sisi lain, generasi Z menunjukkan kelemahan dalam refleksi mendalam terhadap kesalahan konseptual, yang tercermin dalam laporan praktikum kimia dasar. Laporan praktikum dapat menunjukkan seberapa dalam pemahaman sekaligus pola kesalahan konsep yang dialami oleh mahasiswa. Penelitian ini bertujuan untuk menganalisis kesalahan konseptual mahasiswa terkait senyawa ionik dan kovalen dalam laporan praktikum kimia dasar I. Penelitian ini menggunakan metode studi kasus dengan pendekatan kualitatif deskriptif. Peneliti berperan sebagai instrumen yang menilai kesalahan konsep yang terjadi pada mahasiswa melalui pembahasan laporan praktikum. Terdapat 3 kesalahan konsep pada sub-topik perbandingan titik leleh, dan 5 kesalahan konsep pada sub-topik kelarutan.
##plugins.generic.usageStats.downloads##
Referensi
Burrows, N. L., & Mooring, S. R. (2015). Using concept mapping to uncover students’ knowledge structures of chemical bonding concepts. Chemistry Education Research and Practice, 16(1), 53–66. https://doi.org/10.1039/C4RP00180J
Coppo, P. (2017). Lithium Ion Battery Cathode Materials as a Case Study To Support the Teaching of Ionic Solids. Journal of Chemical Education, 94(8), 1174–1178. https://doi.org/10.1021/acs.jchemed.6b00569
Dániel Gergő, P. (2016). Various challenges of science communication in teaching generation Z: an urgent need for paradigm shift and embracing digital learning. Opus et Educatio, 3(6). https://doi.org/10.3311/ope.146
Dhindsa, H. S., & Treagust, D. F. (2014). Prospective pedagogy for teaching chemical bonding for smart and sustainable learning. Chem. Educ. Res. Pract., 15(4), 435–446. https://doi.org/10.1039/C4RP00059E
Emsheimer, P., & Silva, N. L. De. (2011). Preservice Teachers´ Reflections on Practice in Relation to Theories. In A Practicum Turn in Teacher Education (pp. 147–167). SensePublishers. https://doi.org/10.1007/978-94-6091-711-0_8
Erman, E. (2017). Factors contributing to students’ misconceptions in learning covalent bonds. Journal of Research in Science Teaching, 54(4), 520–537. https://doi.org/10.1002/tea.21375
Ferguson, A. L., Debenedetti, P. G., & Panagiotopoulos, A. Z. (2009). Solubility and Molecular Conformations of n -Alkane Chains in Water. The Journal of Physical Chemistry B, 113(18), 6405–6414. https://doi.org/10.1021/jp811229q
Gouvea, J., Appleby, L., Fu, L., & Wagh, A. (2022). Motivating and Shaping Scientific Argumentation in Lab Reports. CBE—Life Sciences Education, 21(4). https://doi.org/10.1187/cbe.21-11-0316
Henderleiter, J., Smart, R., Anderson, J., & Elian, O. (2001a). How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding? Journal of Chemical Education, 78(8), 1126. https://doi.org/10.1021/ed078p1126
Henderleiter, J., Smart, R., Anderson, J., & Elian, O. (2001b). How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding? Journal of Chemical Education, 78(8), 1126. https://doi.org/10.1021/ed078p1126
Kroon, M. C., Buijs, W., Peters, C. J., & Witkamp, G.-J. (2006). Decomposition of ionic liquids in electrochemical processing. Green Chem., 8(3), 241–245. https://doi.org/10.1039/B512724F
Lahlali, A., Chafiq, N., Radid, M., Atibi, A., El Kababi, K., Srour, C., & Moundy, K. (2023). Students’ Alternative Conceptions and Teachers’ Views on the Implementation of Pedagogical Strategies to Improve the Teaching of Chemical Bonding Concepts. International Journal of Engineering Pedagogy (IJEP), 13(6), 90–107. https://doi.org/10.3991/ijep.v13i6.41391
Lee, M., & Fortune, A. E. (2013). Do We Need More “Doing” Activities or “Thinking” Activities in the Field Practicum? Journal of Social Work Education, 49(4), 646–660. https://doi.org/10.1080/10437797.2013.812851
Mufidah, M., Sadiani, N., Akina, A., Nuraini, N., & Khairunnisa, K. (2023). Analysis of Conceptual, Factual, Principle, and Skill Errors Based on Students’ Thinking Ability: How is it Connected to Science Learning? Jurnal Penelitian Pendidikan IPA, 9(5), 3815–3823. https://doi.org/10.29303/jppipa.v9i5.3209
Peterson, R. F., & Treagust, D. F. (1989). Grade-12 students’ misconceptions of covalent bonding and structure. Journal of Chemical Education, 66(6), 459. https://doi.org/10.1021/ed066p459
Rachuru, S., & Vandanapu, J. (2020). Do phase transition temperatures Tmp and Tbp obey linear free energy relationships? Journal of Molecular Liquids, 302, 112496. https://doi.org/10.1016/j.molliq.2020.112496
Rini, E. F. S., & Aldila, F. T. (2023). Practicum Activity: Analysis of Science Process Skills and Students’ Critical Thinking Skills. Integrated Science Education Journal, 4(2), 54–61. https://doi.org/10.37251/isej.v4i2.322
Salame, I. I., & Nikolic, D. (2020). Examining Some of the Challenges Students Face in Learning about Solubility and the Dissolution Process. Interdisciplinary Journal of Environmental and Science Education, 17(3), e2237. https://doi.org/10.21601/ijese/9333
Sandoval, W. A., & Millwood, K. A. (2005). The Quality of Students’ Use of Evidence in Written Scientific Explanations. Cognition and Instruction, 23(1), 23–55. https://doi.org/10.1207/s1532690xci2301_2
Schivell, A. (Mandy) E. (2022). Electron Location, Location, Location: Understanding Biological Interactions. CourseSource, 9. https://doi.org/10.24918/cs.2022.6
Shtepura, A. (2022). Main Characteristics and Stereotypes of Generation Z: Analysis of Foreign Experience. Comparative Professional Pedagogy, 12(1), 86–93. https://doi.org/10.31891/2308-4081/2022-12(1)-9
Üce, M., & Ceyhan, İ. (2019). Misconception in Chemistry Education and Practices to Eliminate Them: Literature Analysis. Journal of Education and Training Studies, 7(3), 202. https://doi.org/10.11114/jets.v7i3.3990
von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131. https://doi.org/10.1002/tea.20213
Wang, C.-Y., & Barrow, L. H. (2013). Exploring conceptual frameworks of models of atomic structures and periodic variations, chemical bonding, and molecular shape and polarity: a comparison of undergraduate general chemistry students with high and low levels of content knowledge. Chem. Educ. Res. Pract., 14(1), 130–146. https://doi.org/10.1039/C2RP20116J
Zwyssig, A. (2023). Molecules Are Not Enough! Overcoming Students’ Overgeneralization Tendencies by Comparing and Contrasting. CHIMIA, 77(10), 679–682. https://doi.org/10.2533/chimia.2023.679
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##Copyright Ⓒ Author